
USING DDE TO COMMUNICATE WITH MICROSOFT PROJECT
FROM OTHER APPLICATIONS

Microsoft Project for Windows has been designed so that you can control it using an
external macro language. By writing macros which contain Dynamic Data Exchange
(DDE) functions, you can issue commands to Microsoft Project and exchange
information with it.

This file contains syntax descriptions and macro samples to help you access Microsoft
Project information using DDE and the macro languages of other applications, such as
Microsoft Excel, Microsoft Visual Basic or Microsoft Word.

There are several advantages to using DDE commands and an external macro
language to control and communicate with Microsoft Project. You can:

- Use commands available in the external macro language to create dialog boxes
and controls which provide a custom interface to Microsoft Project.

- Exchange information as needed between another application and Microsoft
Project by running a macro, without linking the two documents. This provides a
faster exchange of information when you need to move a lot of data between
applications.

- Access categories of Microsoft Project information which are not available through
conventional cutting and pasting or linking. While conventional DDE links are
limited to the task and resource fields available in Microsoft Project tables, with
macros you can directly access detailed resource assignment fields and some
Project Information and Project Status fields.

- Control Microsoft Project from another application by sending it Microsoft Project
macro commands included in a macro written with an external macro language.

In general, using an external macro language will give you more flexibility and control
than Microsoft Project's macro language, which is used for simple scripting, looping,
and branching of Microsoft Project commands. In addition, when you use external
macros you can take advantage of the capabilities of two different applications. For
example, you might calculate estimated task durations using Microsoft Excel, then
use a Microsoft Excel macro to send these durations to Microsoft Project, instructing
Microsoft Project to select and link the tasks, and send back the project finish date.

If all you need to do is establish simple DDE Links between your application and the
fields in a Microsoft Project file, you do not need to use macros; you can simply copy
the information in your application and use the Paste Link command to insert it into
Microsoft Project. Or, you can copy information from a table in Microsoft Project, and
link it into another application using that application's equivalent of the Paste Link
command. This type of DDE linking is described in the "Transferring Information"
topic in the Microsoft Project User's Reference.

This file contains basic information about the syntax you use to access Microsoft
Project information when writing macros in external macro languages. It includes
examples using Microsoft Excel's macro language, Microsoft Word's WordBasic, and
Microsoft Visual Basic. More complex sample macro files written with these
languages are also included with Microsoft Project. You can open these files if you
have the appropriate application or language installed on your system. For more

information about the Microsoft Project macro language, refer to the file called
COMMANDS.WRI.

For complete information about your macro language's commands, structure, and
syntax, refer to your macro language documentation.

Establishing a DDE Conversation with Microsoft Project
Using macros, you can set up a DDE conversation between your application and
Microsoft Project.

You control the conversation by issuing commands to Microsoft Project in the form of
macro statements. Microsoft Project responds to the commands by performing
requested actions, accepting data sent by the macro, or by sending back requested
information.

To initiate a DDE conversation with Microsoft Project, you need to send macro
commands that do the following:

1. Initiate a DDE conversation, specifying Microsoft Project as the application you
want to communicate with. To identify Microsoft Project as the object of a DDE
conversation, include its application name: WINPROJ.

2. Specify the "topic" of the conversation. There are two types of topics: "System,"
for communicating with Microsoft Project itself, or a reference to a specific
Microsoft Project file.

The commands are usually arranged as:

 <DDE Initiate Command> "Winproj" "<topic>"

For example, the following lines from macros establish communication with Microsoft
Project at the System level:

Microsoft Excel: =INITIATE("Winproj","System")

Microsoft Word WordBasic: channel1 = DDEInitiate("Winproj","System")

Visual Basic: Label1.LinkTopic = "Winproj|System"
Label1.LinkMode = 2

When you initiate a DDE conversation using a System topic, Microsoft Project can
respond to requests or Execute commands with general system information such as
application status or the content or position of the current selection in the currently
active file.

When you initiate a DDE conversation using a specific file name as the topic, your
macro gives you direct access to the information within that file; you can insert
information into the fields of the project file, and request information from it without
referring to the current selection in the file. The topic should include the full path and
filename of the file, which must currently be open in Microsoft Project.

In other words, using the System topic communicates with Microsoft Project, while
2

using a filename as a topic communicates with a specific Microsoft Project file.

For example, the following lines from macros establish communication with the
Microsoft Project file specified in the topic statement:

Microsoft Excel: =INITIATE("Winproj","c:\win3\move.mpp")

Microsoft Word WordBasic: channel1 = DDEInitiate("Winproj","c:\win3\move.mpp")

Visual Basic: Label1.LinkTopic = "Winproj|c:\win3\move.mpp"
Label1.LinkMode = 2

Note that you may want to open more than one channel in any given macro: for
example, you may need access to both the general information supplied at the
System level and specific information available on a channel opened to a particular
file.

Once your macro has established a DDE communications channel, it can send
additional commands to specify what you want Microsoft Project to do, and what
"items" you want it to send or receive. "Items" are categories of information that the
System can provide, or references to specific fields of information within the file
identified in the topic statement. By including DDE commands paired with item
references, your macros can:

- Use Request commands that ask Microsoft Project to send back specific
information. You can request either an item that the System can provide, or an
item from a specific file. For example, your macro might request the data
currently selected in a project (a System item), or the finish date of a task (a file-
specific item).

- Use Poke commands, which transfer information into Microsoft Project. When you
poke information, it is as if the macro is typing information directly into Microsoft
Project fields. Usually pokes are directed into specific files, but some System
items can also accept poked information.

- Send DDE Execute commands: these are macro commands which allow you to
control Microsoft Project as if you were choosing commands from its menus. Most
of the Microsoft Project commands are available as equivalent macro commands.
In addition, "action-equivalent" macro commands are available, enabling you to
instruct Microsoft Project to execute common actions, such as promote or
demote tasks. Each macro command consists of a version of the command
name or name of the action, followed in some cases by required and optional
arguments. For more information, see "Sending DDE Execute Commands" later in
this file. The complete syntax of each macro command is described in the file
COMMANDS.WRI, and is included in online Help in "Commands Used in Macros."

As a final step, every macro should include DDE Terminate statements, to stop the
DDE conversation and close any DDE channels used during execution of the macro,
thus freeing up memory and system resources.

So the general structure of a DDE Macro that communicates with Microsoft Project is
as follows:

3

<DDE Initiate Command> "Winproj","<System, or path and filename>"
<DDE Request, poke, or execute commands> "<System or file-specific items, or

macro commands>"
<DDE Terminate Command>

You can send pokes, requests, and macro commands to Microsoft Project on channels
established both to the System or to a specific file.

Syntax examples for different macro languages are provided in the following sections
of this file.

Using the System Topic and System Items
Here are two examples of simple DDE macros that communicate with Microsoft
Project with the System topic.

The following Microsoft Excel macro initiates a DDE conversation with Microsoft
Project at the System level, requests the field of data selected in the active project
and uses the Formula statement to place it as a formula in the cell B3 in Sheet1.
Begin by pasting this macro into a macro sheet starting at cell A1 so the cell
references will be correct.

=INITIATE("WINPROJ","SYSTEM")
=FORMULA(REQUEST(A1,"ActiveData"),Sheet1!B3)
=TERMINATE(A1)
=RETURN()

An equivalent Microsoft Word for Windows macro gets the currently selected data in
Microsoft Project, and displays it in the Microsoft Word Status Bar.

channel1 = DDEInitiate("winproj", "system")
data$ = DDERequest$(channel1, "ActiveData")
Print data$
DDETerminate channel1

In Microsoft Visual Basic, the structure would be:

Sub Command1_Click ()
 Label1.linktopic = "winproj|system"
 Label1.linkmode = 2
 Label1.linkitem = "ActiveData"
 Label1.linkrequest
End Sub

The following list describes the valid System items you can request from Microsoft
Project and the information each returns. Returned information is the response sent
back to the requesting application by Microsoft Project; how you display it depends
on what commands you include in your macro. See the "Examples Section" later in
this document for some examples of how to handle Microsoft Project data returned to
a macro.

SysItems
Returns a list of all the available System items (as described in this list).

Topics
Returns a list of all the topics currently available for DDE: this is a list of the Microsoft

4

Project files that are currently open, and "System."

Status
Returns "Ready" or "Busy" depending on the current state of Microsoft Project.
Microsoft Project may be busy if it is currently calculating or printing a project, or
waiting for input while displaying a dialog box.

Formats
Returns a list all the data formats Microsoft Project supports: Biff3, Biff, RTF, and Text.

Selection
Returns a reference that defines the current selection in Microsoft Project: for
example, T((1,2),name) indicates that the name field for two tasks is currently
selected. If the selection does not contain any tasks or resources, Microsoft Project
refuses the request. If there is a multiple selection in Microsoft Project, only the first
block of the selection is returned. For complete explanation of the syntax, see
"Syntax Examples for Each Data Type" later in this document.

SelectedData
Returns the data within the current selection as an array (rows and columns). The
records are tab delimited, with a carriage return/line feed (CR/LF) included at the end
of each record, if more than one record is returned. You can poke information into the
SelectedData item, as well as request it.

SelectionPos
Returns the coordinates of the current selection as a series of numbers in the
following order: x-coordinate of the upper-left corner of the selection, y-coordinate of
the upper-left corner of the selection, width of selection in columns, height of
selection in rows.

For example, if you had six cells in the upper left corner of a task sheet selected,
SelectionPos would return

1,1,2,3

to indicate that the selection begins at coordinates 1,1 (row 1, column 1), and
consists of 2 columns by 3 rows.

ActiveCell
Returns a reference that defines the active task or resource and field in the active
window.

ActiveData
Returns the data in the active cell. This item is similar to SelectedData but includes
only one field of information.

Note that you can poke information into the ActiveData item, as well as request it.

NumLines
Returns the total number of lines in the active view, up to and including the last non-
blank task or resource. If a filter has been applied to a view, only the visible lines are
counted.

5

LastError
Returns the last error state active when a macro sent data to Microsoft Project.
Returned as an array consisting of:

Topic Item Error Code

where Error Code is 0 = no error
1 = syntax error
2 = value error
3 = clipboard format error
4 = memory error

For example, if you tried to poke information into a request-only item, such as
NumLines, requesting LastError would return: "System","NumLines", 1.

You can request the following System items to find out the current state of Microsoft
Project. By requesting these items in your macro and storing them as variables, you
can use them later in the macro to restore Microsoft Project to its original state.

ViewFile
Returns the full path and filename of the current Microsoft Project view file.

CalendarFile
Returns the full path and filename of the current Microsoft Project calendar file.

ActiveView
Returns the name of the active view. If a dual-pane view is being displayed, only the
name of the active pane is returned.

ActiveTable
Returns the name of the table applied to the view.

ActiveFilter
Returns the name of the filter applied to the view.

ActiveProject
Returns the full path and filename of the active project.

Using a Specific Microsoft Project File as a Topic
This section explains how to set up a macro to exchange information with a particular
Microsoft Project file, including how to transfer information into specific fields in a
Microsoft Project file, and how to specify the location of data that you want to extract
from Microsoft Project files.

To access information in a specific Microsoft Project file, you need to first establish a
DDE communication channel with a DDE Initiate command that specifies the topic as
the path and name of a project file.

In Microsoft Excel you would include the line: =INITIATE("WINPROJ","path and
filename")

For example: =INITIATE("WINPROJ","c:\win3\project\aero.mpp")
6

In Microsoft WordBasic, you would include the line:
channum = DDEInitiate ("winproj","path and filename")

For example: channel1 = DDEInitiate("winproj","c:\win3\move.mpp")

In Microsoft Visual Basic, you would include the lines:
object.linktopic = "winproj|path and filename"
object.linkmode = 1 or 2

For example:
label1.linktopic = "winproj|c:\win3\project\aero.mpp"
label1.linkmode = 2

Then subsequent lines in the macro can refer back to this channel to request
information from the file, or poke information into it.

When you refer to information in a Microsoft Project file, you list the type of
information you are requesting or sending, followed by lists of unique task or
resource ID numbers and lists of fields. For example, you might request task
information, specifying names and durations; or you might send resource
information, specifying rates for wages. The general format is:

Information Type((list of Unique ID numbers),(list of fields))

The Unique ID number is a number Microsoft Project assigns sequentially to each task
or resource as it is created in a project. This Unique ID number is distinct from the
Task or Resource ID number, which may change for a given task or resource when
tasks or resources are inserted or deleted, or if you renumber during sorting.

It is important that your macros include the Unique ID number when referring to
fields related to a specific task or resource. To find out the Unique ID number for a
task or resource, create a table in Microsoft Project that includes a column for Unique
ID. Or, you can set up your macro to request the Unique ID for a task or resource for
subsequent use within the macro. For example, you could set up a request using the
wildcard symbol (*) to request this information for all tasks, such as the following,
which requests the name and Unique ID number for each task in the current project
file:

T(*,(Name,Unique ID))

The following example shows how to refer to task information for specific tasks
within a Microsoft Project file:

T((1,2,5,7),(Name,Cost))

T = Task Information (to indicate fields that contain information about tasks).

1,2,5,7 = The Unique ID numbers of tasks you want to refer to in the project.

Name, Cost = The information contained in the name and cost fields for the
tasks specified by the Unique ID numbers.

7

In other words, you need to tell Microsoft Project what type of data you want sent or
received, identify the tasks or resource it applies to, and identify precisely what fields
of information are being exchanged.

Syntax Guidelines
The following general guidelines and rules will help you in structuring macros that
access the information in Microsoft Project files:

- All the letters and names are case-insensitive.

- You can arrange the Unique ID numbers and fields in whatever order you wish;
information will be sent or returned in the order in which it appears within the
macro statements.

- List separator characters: the default list separator character, usually a comma
or semicolon, can be changed using the Preferences command on the Options
menu in Microsoft Project. If you are using a different list separator character in
Microsoft Project, substitute that character in the portions of the macro that refer
to Microsoft Project fields. For example, if the list separator character had been
changed to a semicolon, you would use syntax like this:

=DDEPoke(channum,"T(1;name)")

If you want to assure that you are using the correct list separator character,
include a DDE execute statement in your macro that explicitly sets the list
separator character. For example:

OptionsPreferences .ListSeparator=[,]

- Wildcards: in most cases you can substitute the wildcard character (*) for lists of
task or resource Unique ID numbers, in order to request information about all
tasks or resources in the active project. Wildcard examples are included where
appropriate in the syntax examples in the next section.

Information Types and Syntax Examples
This section describes the syntax you use to refer to the fields of information
contained in Microsoft Project files. When writing macros to exchange information
with Microsoft Project, you follow the DDE Request or DDE Poke commands with
references to the information type, Unique ID numbers, and fields you want to
request information from or poke information into.

There are five different Microsoft Project information types:

- Project Information
- Task Information
- Resource Information
- Resource Assignment Information
- Unique Resource Assignment Information

Each information type is designated by a different identifying letter. You can also use
equivalent identifying numbers, listed below, instead of the identifying letters. Use

8

the numbers instead of the letters if your macro must work with versions of Microsoft
Project that have been translated into different languages.

You can refer to fields by field name, as shown in the examples in this section, or you
can use the equivalent field numbers, which match the field numbers used in the
Microsoft Project Exchange (MPX) file format. For example, 1 = Name, 40 = Duration,
etc. The field number equivalents for Microsoft Project fields are included in the files
MPXFILE.WRI and FIELDS.WRI. These numbers are also used when working with
versions of Microsoft Project that have been translated into different languages.

Type P or 0 - Project Information (Global)

P = Project information, or "global" information which applies to an entire project, not
particular task or resource fields. Can also be specified by the equivalent information
type number, 0.

The fields correspond to the fields found in the Project Information and Project Status
dialog boxes in Microsoft Project. Only number entries are allowed for these fields, so
use the field numbers listed below:

1 = Project
2 = Company
3 = Manager
4 = Project Calendar
5 = Project Start Date
6 = Project Finish Date
7 = Schedule From
8 = Current Date
9 = Notes
10 = Cost
11 = Planned Cost
12 = Actual Cost
13 = Work
14 = Planned Work
15 = Actual Work
16 = % Work Complete
17 = Duration
18 = Planned Duration
19 = Actual Duration
20 = % Complete
21 = Planned Start
22 = Planned Finish
23 = Actual Start
24 = Actual Finish
25 = Start Variance
26 = Finish Variance
27 = Number of Tasks
28 = Number of Resources

For example, P(1,3,6) or 0(1,3,6) refers to the Project Name, the Manager, and the
Project Finish Date.

9

Pokes into fields 10 through 17 will be ignored, because the fields are always
calculated by Microsoft Project.

Type T or 1 - Task Information

T = Task information, used for references to task fields. Task fields are displayed in
task tables in Microsoft Project. Can also be specified by the number 1.

List of IDs = Unique ID number for the tasks being referenced
List of Fields = Names (or numbers) of Task fields being referenced, as in:

T((list of IDs),(list of fields))

This example requests the name and duration for the tasks with Unique ID numbers
33 and 35.

T((33,35),(Name,Duration)) or
1((33,35),(Name,Duration)) or
1((33,35),(1,40))

The value is returned as an array. For example, if the two tasks are called "site
survey" and "excavation" and their durations are 10d and 20d respectively, Microsoft
Project would return:

{"site survey",10;"excavation",20}

How this array would appear depends on how your macro is set up to display
returned values.

Using wildcards, you could request the name and duration of all tasks in the project:

T(*,(Name, Duration))

Type R or 2 - Resource Information

R = Resource information for references to resource fields. Resource fields are
displayed in resource tables in Microsoft Project. Can also be specified by the
number 2.

List of IDs = Unique ID numbers for the resources being referenced
List of Fields = Names (or numbers) of Resource fields being referenced, as in:

R((list of IDs),(list of fields))

This example request the standard resource rate for the resources with Unique IDs 21
through 25:

R((21,22,23,24,25),(Standard Rate)) or
2((21,22,23,24,25),(Standard Rate)) or
2((21,22,23,24,25),(42))

The value returned would be a an array, pairing resource names with standard rate
values.

10

Using wildcards, you could, for example, request the name and cost for each resource
in the project:

R(*,(Name, Cost))

Type A or 3 - Resource Assignment Information

A = Resource assignment information and refers to the resource assignment fields
displayed in the fields at the bottom of the Task Form or Resource Form in Microsoft
Project. These fields contain detailed information about each resource assigned to a
task. Can also be specified by the number 3.

List of IDs = pairs of numbers that define what resource is assigned to what task
(Task Unique ID number followed by Resource Unique ID number).

List of Fields = the field numbers that represent the resource assignment fields. Only
number entries are allowed for these fields, so use the field numbers listed below:

1 = Unique Assignment ID (defined in "Type U or 4" section below)
2 = Task Unique ID
3 = Resource Unique ID
4 = Units
5 = Work
6 = Planned Work
7 = Actual Work
8 = Overtime Work
9 = Cost
10 = Planned Cost
11 = Actual Cost
12 = Scheduled Start
13 = Scheduled Finish
14 = Delay

Pokes into fields 1, 2, 3, 12, and 13 will be ignored because they are always
calculated by Microsoft Project.

The syntax is:

A((list of ID number pairs),(list of field numbers))

Examples:

A(((3,3),(3,4),(3,5)),(5,6))

Refers to the Work and Planned Work fields (fields 5 and 6), for resources with
Resource Unique IDs 3, 4, and 5, which are assigned to a task with Task Unique ID =
3.

A((1,*),(5,6))

Refers to the Work and Planned Work fields (fields 5 and 6), for all the resources
11

assigned to the task with Task Unique ID=1.

A(((*,2),(*,3)),5)

Refers to the Work field (field 5), for all tasks that have the resources with Resource
Unique IDs = 2 and 3 assigned to them.

Type U or 4 - Resource Assignment Information, Referencing Unique ID

U = Unique Resource Assignment information. In addition to task and resource
Unique ID numbers, Microsoft Project assigns a Resource Assignment Unique ID
number each time a resource is assigned to a task. You may want to access this
number to identify a specific instance in which a resource has been assigned to a
task, for example if the resource has been assigned more than once to the same
task.

These numbers are not displayed in Microsoft Project, so you must request them in
your macro if you need to refer to them.

To get the unique resource assignment ID numbers for a task, you need to send a
request to Microsoft Project, using information type A (resource assignment
information), and asking for field 1 (Assignment Unique ID). For example:

A((1,3),1)

means "show me all the Unique Resource Assignment ID numbers that have been
assigned to the pairing of the task with Unique ID = 1 and the resource with Unique
ID = 3." If you get more than one number back, it indicates that the resource is
assigned to the same task more than once.

Unique Resource Assignment ID numbers can also be specified by the number 4.

List of IDs = Task Unique ID, paired with Unique Resource Assignment ID.

List of Fields = Only number entries are allowed for these fields, so use the field
numbers listed below:

1 = Unique Assignment ID
2 = Task Unique ID
3 = Resource Unique ID
4 = Units
5 = Work
6 = Planned Work
7 = Actual Work
8 = Overtime Work
9 = Cost
10 = Planned Cost
11 = Actual Cost
12 = Scheduled Start
13 = Scheduled Finish
14 = Delay

Pokes into fields 1, 2, 3, 12, and 13 will be ignored, because the fields are always
12

calculated by Microsoft Project.

The syntax is:

U((list of ID numbers paired with Unique Resource Assignment ID),(list of field
numbers))

Examples:

U((3,10),5)

Refers to the Work field (field 5), for the task with Task Unique ID = 3, which has
Unique Resource Assignment 10.

U(((3,5),(4,7)),(5,6))

Refers to Task 3, Assignment 5, Task 4, Assignment 7, fields 5 and 6 (Work and
Planned Work) (3,5,4,7 are all Unique references).

Combining System and File Topics in the Same Macro
You may want your macros to open more than one DDE channel to communicate with
Microsoft Project: one channel to open a specific file you want to access information
in, and a System channel so that you can request System items. You'll need to set up
the macro so that System-related requests refer back to the System channel, while
the file specific lines of the macro refer back to the channel opened to a specific file.
For more information, see the "Examples Section" later in this file.

Sending DDE Execute Commands
In addition to Pokes and Requests, you can send commands directly to Microsoft
Project. Most of the commands on the Microsoft Project menus are available in a
macro command format, so that you can operate Microsoft Project from within a
macro. In addition, "action-equivalent" commands are available to allow macros to
perform common operations that are not specifically related to commands, such as
selecting tasks, collapsing and expanding outlines, and so on. For more information,
see the file COMMANDS.WRI which describes the Microsoft Project macro language.

Execute commands can be sent on DDE communication channels established either
with the System or to a specific Microsoft Project file. The commands always act on
the active project.

A given command may be followed by required and/or optional arguments which
correspond with the settings or options usually available when you are running
Microsoft Project directly. Other commands do not require any arguments.

When you send macro commands to Microsoft Project, no dialog boxes are displayed
for most commands. If you want Microsoft Project to display dialog boxes during the
execution of a macro, you should include SendKeys commands in the macro.

Arguments in command functions are separated by the list separator character,
usually a comma or semicolon, as specified in the Preferences dialog box, or by
spaces. If the value within a field contains the list separator character or a space, it

13

must be surrounded by quotation marks. Microsoft Project supports the use of either
brackets or quotation marks, because you may find that some applications work
better with one or the other.

For commands with arguments, the general syntax is:

command name .argument name=argument value

Note that a space follows the command name and precedes the period before the
argument name.

Following are some examples of commands with and without arguments. The
Examples section at the end of this file also includes the use of DDE Execute
commands within macros.

The following examples show macros that set the start date for a project, select and
link the tasks within it, and then request the project finish date.

Microsoft Excel (paste into a macro sheet starting at cell A1):

=INITIATE("Winproj","Project1")
=EXECUTE(A1,"OptionsProjectInfo .Start=9/22/92")
=EXECUTE(A1, "View [Task Sheet]")
=EXECUTE(A1, "SelectAll")
=EXECUTE(A1,"EditLinkTasks")
=FORMULA(REQUEST(A1,"P(6)"),(Sheet1!A1))
=TERMINATE(A1)
=RETURN()

Microsoft Word WordBasic:

channel1 = DDEInitiate("Winproj","Project1")
DDEExecute channel1, "OptionsProjectInfo .Start=9/22/92"
DDEExecute channel1, "View [Task Sheet]"
DDEExecute channel1, "SelectAll"
DDEExecute channel1, "EditLinkTasks"
Finish$ = DDERequest$ (channel1,"P(6)")
Print Finish$
DDETerminate channel1

Microsoft Visual Basic:

label1.linktopic = "winproj|project1"
label1.linkmode = 2
label1.linkexecute "OptionsProjectInfo .Start=9/22/92"
label1.linkexecute "View [Task Sheet]"
label1.linkexecute "SelectAll"
label1.linkexecute "EditLinkTasks"
label1.linkitem = "P(6)"
label1.linkrequest
label1.linkmode = 0

Examples Section
This section contains short examples of macros written in the macro languages of
Microsoft Excel, Microsoft Word, and Microsoft Visual Basic. You can run these by
copying and pasting them into their respective application or language.

14

Longer examples of macros written in each of these languages have been included
with Microsoft Project, and can be found in the directory where you installed Microsoft
Project. You can launch these macros using the AppExecute function in the Microsoft
Project macro language, or run them from their respective applications. You can also
add them to the Microsoft Project Macro menu or assign them to buttons on the tool
bar.

Microsoft Excel Macro Examples

This section contains examples of short Microsoft Excel macros which place
information into or extract information from Microsoft Project. You can copy and
adapt them for use in you own macros, using the syntax described in this document.
For the cell references in these macros to be accurate, you should begin by pasting
them into a macro sheet starting at cell A1. Also, you should turn off R1C1
references (using the Workspace function).

This macro requests all tasks in Project1, and puts the data into worksheet Sheet1:
=INITIATE("WINPROJ","Project1")
=DEFINE.NAME("AllTasks",REQUEST(A1,"T(*,Name)"))
=FORMULA.ARRAY(AllTasks,"Sheet1!R1C1:R"&ROWS(AllTasks)&"c") Must enter with Ctrl+Shift+Enter
=TERMINATE(A1)
=RETURN()

This macro also requests all tasks in Project1, but uses a named range instead of a
specific references. For example, if the link name MyName is defined as T(*,Name)
in the File Links dialog for Project1, the above macro can be written as follows:
=INITIATE("WINPROJ","Project1")
=DEFINE.NAME("AllTasks",REQUEST(A1,"MyName")) Define MyName as T(*,Name) in File Links dialog of
WinProj
=FORMULA.ARRAY(AllTasks,"Sheet1!R1C1:R"&ROWS(AllTasks)&"c") Must enter with Ctrl+Shift+Enter
=TERMINATE(A1)
=RETURN()

This macro pokes a single duration into a project file called TASKDUR.MPP. Note that
TASKDUR.MPP must contain a task with Unique ID = 1.

30d
=INITIATE("WINPROJ","c:\win3\taskdur.mpp")
=POKE(A2,"T(1,Duration)",A1) A1 contains the data (i.e., 30d)
=TERMINATE(A2)
=RETURN()

This macro pokes an array into Microsoft Project. Note that Project1 must contain
tasks with Unique IDs 4 and 5.

=INITIATE("WINPROJ","Project1")
=POKE(A1,"T((4,5),(Name,Duration))",A5:B6) The array is in A5:B6
=TERMINATE(A1)
=RETURN()
task4 2d
task5 5d

This macro sends DDE Execute commands to Microsoft Project:

=INITIATE("WINPROJ","SYSTEM")
=EXECUTE(A1,"AppMaximize")

15

=EXECUTE(A1,"View [PERT Chart]")
=TERMINATE(A1)
=RETURN()

This macro requests all critical tasks and places their names, along with the name of
the current project, onto Sheet1 (which must be active when this macro is run):

=INITIATE("WINPROJ","system") Initiate SYSTEM chan
=REQUEST(A1,"ActiveProject")
=INITIATE("WINPROJ",A2) Initiate FILENAME chan
=REQUEST(A3,"P(1)") Get and store the project name
=IF(LEN(A4)=0,A2,A4) or if none, the filename
=EXECUTE(A1,"View [Task Sheet]")
=EXECUTE(A1,"OutlineExpandAll")
=EXECUTE(A1,"Filter [Critical]")
=EXECUTE(A1,"SelectAll")
=REQUEST(A1,"Selection") Select the critical tasks
=DEFINE.NAME("CritTasks",REQUEST(A3,LEFT(A10,SEARCH("),(",A10)+2)&"Name))")) Get the

(selected) critical tasks
=FORMULA("The following tasks are critical in "&A5&":",Sheet1!A1)
=FORMULA.ARRAY(!CritTasks,"Sheet1!R2C1:R"&ROWS(!CritTasks)+1&"c1") Must enter with

Ctrl+Shift+Enter
=RETURN()

Microsoft Word for Windows Macro Examples

This section contains examples of short Microsoft Word WordBasic macros which
place information into or extract information from Microsoft Project. You can copy
and adapt them for use in your own macros, using the syntax described in this
document and the guidelines outlined above.

This macro requests the Name and Duration of all tasks in the active project. First, it
gets the active project, using the System topic, then opens a conversation on that
topic. Note that the project must contain tasks with Unique IDs 1, 3, and 5.

Sub MAIN
channel1 = DDEInitiate("winproj", "system")
channel2 = DDEInitiate("winproj", DDERequest$(channel1, "ActiveProject"))
AllTasks$ = DDERequest$(channel2, "T(*,(Name,Duration))")
Insert AllTasks$
DDETerminate channel1
DDETerminate channel2

End Sub

This macro pokes a previously defined Microsoft Word glossary entry called
"ProjectNotes" into the Notes field for the project, using the same type of DDE
connection as the one above. Note that the macro will only paste one line of
information into the Notes field. If there are tab characters or a return character in
the Microsoft Word text, only the characters preceding the first tab or carriage return
will be pasted in:

Sub MAIN
channel1 = DDEInitiate("winproj", "system")
channel2 = DDEInitiate("winproj", DDERequest$(channel1, "ActiveProject"))
DDEPoke channel2, "P(9)", GetGlossary$("ProjectNotes")
DDETerminate channel1

End Sub

This macro pokes the current selection in a Microsoft Word for Windows document
into the Name and Duration fields for tasks 1, 3, and 5, using the same type of DDE

16

connection as the one above:

Sub MAIN
channel1 = DDEInitiate("winproj", "system")
channel2 = DDEInitiate("winproj", DDERequest$(channel1, "ActiveProject"))
DDEPoke channel2, "T((1,3,5),(Name,Duration))", Selection$()
DDETerminate channel1
DDETerminate channel2

End Sub

This macro sends DDE Execute commands to Microsoft Project. First it displays a Task
Sheet and filters for critical tasks, and then it displays the list of critical tasks in
Microsoft Word:

Sub MAIN
 channel1 = DDEInitiate("winproj", "system")
 channel2 = DDEInitiate("winproj", DDERequest$(channel1, "ActiveProject"))
 Project$ = DDERequest$(channel2, "P(1)")
 If Len(Project$) <= 2 Then

Project$ = DDERequest$(channel1, "ActiveProject")
 End If
 CurrentView$ = DDERequest$(channel1, "ActiveView")
 DDEExecute channel1, "View [Task Sheet]"
 DDEExecute channel1, "OutlineExpandAll"
 DDEExecute channel1, "Filter [Critical]"
 DDEExecute channel1, "SelectAll"
 Crit$ = DDERequest$(channel2, "T(" + Mid$(DDERequest$(channel1, "Selection"), 3, InStr(1,

DDERequest$(channel1, "Selection"), "),(") - 2) + ",Name)")
 Insert "The following tasks are critical in " + Project$ + Chr$(13) + Chr$(11)
 Insert Crit$
 DDEExecute channel1, "View [" + CurrentView$ + "]"
 DDETerminateAll
End Sub

Microsoft Visual Basic Macro Examples

This macro is an example of how Microsoft Visual Basic can request information from
Microsoft Project. The macro gets the Project, Company, and Manager name from
Options Project Info for the active project, and displays it in a label. To try this code,
create a form with a label control and a command button control, and paste the code
into the form.

Sub Command1_Click ()
 ' Get general project information from Microsoft Project
 Label1.LinkTopic = "WINPROJ|System" ' DDE topic for ActiveProject
 Label1.LinkMode = 2 ' Use a cold (one-time) link
 Label1.LinkItem = "ActiveProject" ' Request the path of the
 Label1.LinkRequest ' currently active project
 Label1.LinkMode = 0 ' Changing topic

 Label1.LinkTopic = "WINPROJ|" + Label1.Caption
 Label1.LinkMode = 2 ' Use a cold (one-time) link
 Label1.LinkItem = "0(1,2,3)" ' Request the Project, Company, and
 Label1.LinkRequest ' Manager for this project
 Label1.LinkMode = 0 ' Done linking

 ' Replace tabs with carriage returns
 Capt$ = Label1.Caption ' Convert for string routines
 While (InStr(1, Capt$, Chr$(9)) <> 0)
 Mid$(Capt$, InStr(1, Capt$, Chr$(9)), 1) = Chr$(13)
 Wend
 Label1.Caption = Capt$ ' Convert back

17

End Sub

As an example of a macro which sends a DDE Execute command, this example
automatically adjusts the width of all columns in the current table to fit the widest
entry in the columns, using Microsoft Project's Best Fit option. To try this code, create
a form with a label control and a command button control and paste the code into the
form.

Sub Command1_Click ()

 Label1.LinkTopic = "WINPROJ|System" ' DDE topic for executes
 Label1.LinkMode = 2 ' Use a cold (one-time) link

 On Error Resume Next ' Handle errors manually

 Label1.LinkExecute "SelectBeginning" ' Select top left cell
 Counter = 0 ' Initialize counter
 While Counter < 10 ' Do ten iterations
 Counter = Counter + 1 ' Increment counter
 Label1.LinkExecute "ColumnBestFit" ' Best fit this column
 Label1.LinkExecute "SelectCellRight" ' Go to next column
 Wend
 Label1.LinkMode = 0 ' Done linking

End Sub

This example demonstrates how to poke information into Microsoft Project using DDE
from Visual Basic. It allows you to enter the same note for each selected task or
resource. To try this code, create a form with a label control, a text control, and a
command button control. Paste the code into the form.

Sub Command1_Click ()

 ' Request information from active project
 Label1.LinkTopic = "WINPROJ|System" ' DDE topic for ActiveProject
 Label1.LinkMode = 2 ' Use a cold (one-time) link
 Label1.LinkItem = "ActiveProject" ' Request the path of the
 Label1.LinkRequest ' currently active project
 Text1.LinkTopic = "WINPROJ|" + Label1.Caption ' DDE topic for the project-
 Text1.LinkMode = 2 ' specific info
 Label1.LinkItem = "Selection" ' Request the selection
 Label1.LinkRequest

 ' Parse out the list of IDs from the selection, and prepare to DDE poke
 ' into their notes fields
 Text1.LinkItem = Left$(Label1.Caption, 1) + "(" + IDListOf$(Label1.Caption) + ",Notes)"

 ' Loop to multiply number of times text occurs, so note shows up in each
 ' task or resource in Microsoft Project
 StartPos = InStr(Text1.LinkItem, ","): Temp$ = Text1.Text + Chr$(13)
 Do While (StartPos <> 1)
 Temp$ = Temp$ + Text1.Text + Chr$(13)
 StartPos = InStr(StartPos, Text1.LinkItem, ",") + 1
 Loop
 Text1.Text = Temp$
 Text1.LinkPoke ' Poke the information
 Label1.LinkMode = 0

18

 Text1.LinkMode = 0

End Sub

Function IDListOf$ (ByVal A$) ' ByVal to accept VB control captions
 ' Takes a DDE selection description string from Microsoft Project, like
 ' "T((1,2,4),(Name,Duration))" and returns the ID or list of IDs in the
 ' description as a string, like "(1,2,4)"
 CommaPos = InStr(A$, "),") + 1
 If CommaPos = 1 Then CommaPos = InStr(A$, ",")
 IDListOf = Mid$(A$, 3, CommaPos - 3)
End Function

19

